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Abstract
 The study of the autocorrelations of an economic process provides 

information on the dynamics of a time series and synthesizes the link between 

a variable and historical values. In practice, stationarity is a feature that 

requires preliminary conversion of the initial series. In order to avoid the 

wrong conclusions about the economic nature of the variance, the estimation 

and isolation of the variation of chronological nature is ensured. An economic 

analysis must start from the removal of as far as possible the irregularities 

caused by the temporary extreme value. In this regard, the types of values   are 

defi ned, namely the extreme additive values, the temporary extreme values   

and the level changes. Time series decomposition is achieved by using the 

ARIMA model and the Tramo-Seats procedure. In economic analyzes, we have 

to identify the trend and seasonality that are persistent and regular in time 

being associated with the non-stationarity concept, and the cyclic transient 

component and the random component are associated with conceptual 

stationarity. The model used is based on qualitative elements, the signal 

representing the unobserved component that is to be estimated.

 Keywords: Spectral model, time series, extreme value, ARIMA model, 

qualitative factor, factor decomposition, estimation. 

 Classifi cation JEL: C13, C44, C50

Introduction
 In this article, based on the study, the authors sought to present the 

main elements of the spectral model and the extent to which it can be used in 

the analysis of the chronological series. In order to model the deterministic 

eff ects, it is necessary that the observed series be mathematically formalized to 
the stationary series. The authors explain extensively the concepts of extreme 
additive values, temporary extreme values   and level changes. The article 
discusses the essential issues regarding the decomposition of time series using 
the ARIMA model. Also highlight the qualitative elements underlying the 
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model. The study focuses on concrete aspects of admissible decomposition 

and canonical decomposition. Finally, we are dealing with theoretical aspects 

regarding the estimation of the components aimed at achieving a complete and 

fi nite series of the analyzed economic process. The elements underlying the 

spectral model are highlighted in the article. All these aspects are formalized 

in mathematical relationships that can be used successfully in economic 

analyzes. The study underlying this article can be expanded by applying to 

concrete data on which to analyze and implement pertinent decisions.

Literature review
 Anghelache și Anghel (2016), precum și Newbold, Karlson și 

Thorne (2010) au prezentat aspecte fundamentale ale statisticilor economice. 

Anghelache (2008) a analizat indicatorii folosiți în studiul seriilor cronologice. 
Anghelache și Anghelache (2009) au abordat aspecte ale utilizării seriilor 
cronologice în stochastică proceselor. Bardsen și colaboratorii (2005) au 

prezentat elemente ale modelării macroeconomice. Benjamin, Herrard, 
Houee-Bigot și Tavéra (2010) au studiat modalitățile de prognozare pe 
baza modelelor econometrice. Ghysels și Osborn (2001) se referă la analiza 
econometrică a seriilor de timp sezoniere. Müller (2007) a analizat estimarea 
variațiilor de lungă durată. Phillips, Sun și Jin (2006) au cercetat aspecte ale 

estimării densității spectrale și testarea ipotezei robuste.

Research methodology, data, results and discussion
 • Introductory notions
 The study of the process’s autocorrelations provides information 

about the dynamics of a time series and synthesises the link between xt and 

historical values.

 Besides the medium and constant conditions, the weak stationarity 

also implies the condition no.2 which can be written:

  (1)

 From this relationship it results that for a certain distance K the 

autocovarian is constant, ie the relation between the values is constant. 

The values of the autocovers for diff erent k distances can be represented in 

a concentrated form by means of the AutoCorporate Generating Function 

(ACGF) which has the following form:

   (2)
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 The ACGF function being symmetric can be written:

  (3)

 

 An important result that comes out of Wald’s fundamental theorem is 

the representation of ACGF function with infi nite polynomial )(By
  (4)

 From the fundamental representation of Wald

  (5)

 we can see that it can not be used in numerical estimation problems 

because it contains an infi nite number of terms. Therefore, the following 

rational approximation will be used:

   (6)

 From Relationships (4) and (6) there is a new form of ACGF function 

for an ARMA process:

  (7)

 B is a complex number with module 1 that can be written as
wie . 

Therefore, if in relation (3) we replace operators F and B by their complex 

representation we obtain:

  (8)

 and if we replace in relation (7) we obtain:

  (9)

 If we use the identity

  the relationship (8) becomes:

  (10)
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 The function )(vg  represents the spectrum generating function that 

is used, depending on the situation, in one of its above-mentioned forms.

If we divide the relation (10) prin 2p , we obtain the power of the spectrum:

  (11)

 The transition from the generating function of the autocovers to the 

power of the spectrum is called the Fourier transform.

 Obtaining autocovers from the power of the spectrum is done by the 

inverse of the transformed Fourier data through the relationship:

  (12)

 If the generating function of the autocovers is replaced by the 

correlation generating function, by division with the series variation 0g , the 

spectral density function is obtained.
 

 • Pre-adjustment of time series
 To model the deterministic eff ects we assume fi rst that the observed 
series is stationary so we can write:

  (13)
 Where tm  are the average of the process such as:

                                                                    (14)
 The variable tY  is a vector of regressive variables, ......( 1

'
tt YYY = Y

rt
), 

weighted by the vector of coeffi  cients ).......(, 1

'

rbbbb = , 
tZ  follows a 

general ARMA process, of form tt aBZB )()( q=F , in which )(Bf  and 

)(Bq  satisfy the conditions of stationarity and inversibility. The variance of 

the process 
tY  is given by:

  (15)

 In practice, stationarity is a feature that often requires a preliminary 

transformation of the initial series. We note with )(Bd the diff erentiating 
operator of the order d that makes the necessary transformation to obtain 
stationarity. Then 

  therefore we obtain:

  (16)
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 This type of model is known as linear regression models with ARIMA 

errors or, in short, REG-ARIMA.

 In most cases, statistical agencies off er quarterly or monthly data. 
If data are recorded monthly, for example, it is natural to have a monthly 
variation due to the number of days in a month and, implicitly, the number 
of working days in each month. In order to avoid misconceptions about the 
economic nature of the variation, it is desirable to estimate and isolate the 
variation of the calendar nature.
 If we express the series observed according to the number of days of 
each month, considering each day of the week a possible infl uence factor, we 

can write:

 

  (17)

 where itY  is the number of days for each day of the week, for example 

tY1  represents the number of months in months of month t, tY2 the number 

of days and so on and the coeffi  cients id represent the average amount of the 

respective day.

 The amount iti iYå =

7

1
b   calculated for each month of registration t, 

represents an average value calculated from the assumption that on a certain 

day of the week the same value is observed throughout the year. Therefore, 

the values observed on a monthly basis will be diff erent only because of the 
number of days, thus eliminating the calendar day eff ect of the number of 
working days.
 In practice, the coeffi  cients ib  are strongly correlated and hence 

recursive. If we calculate the daily average, å =
=

7

1
7/1

i ibb  and we consider 

tm  as the length in the days of the month t so å -
=

7

1i itt Ym  then we can 

rewrite:

  (18)

 The economic activity varies depending on certain special moments 

of the year, such as Christmas or Easter holidays, which are usually associated 

with strong sales growth. While Christmas holidays take place every year at 

a fi xed date, the Easter eff ect can manifest in both April and May. Therefore, 

choosing each year of the date when Easter is celebrated can induce a certain 

variability in the data series from one year to the next.

 It is often useful to remove and, as far as possible, explain the 

irregularities in the data series. These can be of several types: extremely 

additive values, temporary extreme values, and level changes. Assuming that 
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a model has been identifi ed for the series then we have the residual values te . 

Considering is a „white noise”
)( tot

I  it is an alternative variable so 1
)(
=

tot
I

if 0tt =  and 0)(
0

=tIt  if 0tt ¹  then we can defi ne the following types of 

values:

 -  Extreme additive values that are very low or very high values that 

aff ect a single recorded value. These values may be recorded due 

to exceptional events. For example, if we have a set of time that 

expresses the monthly traffi  c on a particular route when the road is 

closed for repair for one month in the time series, we will have a 

value of 0 for that month.

  (19)

 -  Temporary extreme values represent a shock followed by a gradual 

return to the general trend of the series. Such values are frequently 

encountered in phenomena such as strikes, for example, because 

after a strike, the return to the initial activity is not spontaneous, 

but is achieved gradually after several periods of time.

  (20)

 - Level changes. These changes in the general trend can generally be 

caused by changes in country or product nomenclatures.

  (21)

 • Decomposition of time series using the ARIMA model
 Unlike the structural approach, starting with the specifi cation of the 

models directly for the time series components, the ARIMA-based approach 

initially identifi es a model for the observed series and then, on its basis, the 

models for each component are obtained.

 Starting from the ARIMA model for the observed series, the decomposition 

in the factors of the polynomial of the autoregressive part produces autoregressive 

polynomials for the series components. If the spectrum for all components is non-

negative then the decomposition is acceptable. For an ARIMA model identifi ed 

for the observed series, there is generally no single decomposition. In principle, 

decomposition variants diff er by how „noise” is allocated to the components. By 

entirely assigning the noise of the random component a unique decomposition is 

obtained which represents a canonical decomposition.

 In the actual decomposition phase of the observed SEATS series, 

we will start from the assumption that the observed time series was initially 

linearized by the TRAMO procedure.

 The ARIMA based time series decomposition approach starts from the 

assumption that a observed process Xt consists of several unnoticed processes 



Revista Română de Statistică - Supliment nr. 6 / 2019 101

such as the seasonal component St the trend Tt, the cyclic component Ct and 

the random residual component Rt.

 It is assumed that the observed process is related to its unobserved 

components through an additive relationship of the relationship type (2). If 

the initial relationship is not additive, it can be brought to this form through a 

series of operations. For example, if we have a series of multiplicative links, 

of the relationship type (1), by logarithm it can be brought to the additive 

form.

 Trend can be seen as a deterministic equilibrium relation:

 Tt= a + bt where t represents the variable time

 which implies ΔTt = b .

 The equation above is the equation of a straight with a slope or, 

economically, a steady increase. Such developments do not meet in practice 

in economic life, so in a more realistic approach we can introduce a certain 

disturbance in the confl ict. This disruption assumes a zero mean and a 

constant variant, thus obtaining a stochastic trend of the form:

  where: 

 (22)

  

  which implies: 

 

 and, more generally, a stochastic trend can be described by an IMA 

(2,1) model: 

  (23)

 A more general class of patterns for the trending component is 

represented by:

  (24)

 where Φp and Φns are polynomials of relative order, and the roots of 

the  Φp are all real, positive and stable and d = 1, 2, in general, and very rarely 

d = 3.

 As for the seasonal component, it can be modeled from the 

deterministic point of view, depending on an alternative variable. If we have 

the seasonal component expressed monthly, then we can write:
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  (25)

 where dit  = 1 for i=t and dit = 1 in rest. The parameters β, have the 

property as:

 

 

 from which it follows that the sum of the values of 12 consecutive 

months is 0:

 S1 , S2 ………………S12  =0    or more generally   

   (26)

 Because in reality this equilibrium is disturbed by a certain shock that 

we will consider a moderate stationary process we can write:

 wt (27)

 To cover a larger class of models, we can write the more general form:

  where:

 

   (28)

 The roots of polynomial Φns (B) are associated with seasonal 

frequencies.

 The random component is assumed to be „white noise”. In addition to 

the fact that there is a stationary transient component, this is represented by an 

ARMA model of the form:

 

  (29) 

 The roots of the Φns component are sometimes associated with the 

fi xed periods of a cyclic component. In economics, the term cycle is often 

used to designate the deseasonalized time series and no trending component.

 What is relevant so far is that trend and seasonality, which are persistent 

and regular over time, are associated with the concept of non-stationarity, and 

the transient or cyclical component and random component are associated 

with the concept of stationarity.

 If we generalize and assume that there are K components in the time 

series the model will be represented by the following set of equations:
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 i=1,...,k (30)

 where Φi (B) and θi (B) are polynomials fi nite in B of order pi and qi 

respectively, do not have roots common and all roots are on or off  the circle 

unity and

 ,  is a „white noise”.

 Since ARIMA models are aggregated, all ARIMA models are obtained 

by xi, it will also be expressed by an ARIMA model:

  (31) 

 where

    is a „white noise”..

 Starting from the previous relationships it can be shown that the 

polynomial of the autoregressive component of the model (32) for the observed 

series xt satisfi es the relation:

  (32)

 and the polynomial of the moving average can be obtained from the 

relationship

  (33)

 where Φni (B) is the product of all polynomials Φj (B), j=1,...,k  

excluding the polynomial Φi (B).

 
 • Elements of a qualitative nature that underlie the model
 Because not always all the unnoticed components are of interest, we 

will still consider a relationship with a higher degree of aggregation and a more 

practical character made up of signal and non-signal. The signal represents the 

unobserved component that is expected to be estimated and the non-signal 

represents the remaining part of the series.

  (34) 

 where: st - the signal

 nt – the non signal.
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 In a seasonal adjustment problem, ie if the seasonal component is to 

be removed, the signal will be represented by the non-seasonal part, ie the 

signal will be 

  (35)

 In addition, it is necessary to mention the premises of Box, Hillmer 

and Tiao (1978), Burman (1980), and Hillmer and Tiao (1982), which laid the 

foundation for the decomposition method based on ARIMA models.

 Premise no. 1

 Unobserved components are unrelated. It is an assumption that has 

an explanation based on the fact that it is intuitively normal for diff erent 

components of the observed series to be generated by diff erent forces. 

Seasonal fl uctuations, for example, are caused by seasonal events such as 

seasons, holidays, holidays, etc. while the evolution of the trend is caused by 

factors such as technological progress, productivity gains, etc.

 Premise no. 2

 The unobserved components can be described by ARIMA models of 

the form:

   for the signal (36)

 for  the non signal (37)

 Where ast
 and  ant is the „white noise” with the νs variance respectively νn

 Models are considered irreducible.

 Premise no. 3

 The polynomials of the autoregressive component  (AR), Φs (B) and 

Φn (B) and Φn (B) do not have common roots, which means that the spectrum 

for the unobserved components does not get high values at the same frequency.

 Premise no. 4

 The model for the observed series is known, ie the polynomials Φx 
(B), θx (B) and the variance of innovation, νa , are known.

   From the above assumptions it follows that the observed series model, 

xt is an ARIMA model of the form:

   (38) 

 where,

 

   (39)

 and at is a „white noise”, normally distributed with the variance νa.
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 • Admissible decomposition
 Because of the fact that the autoregressive polynomials of the 

components, the signal and the non-signal are determined by factoring the 

polynomial Φx (B) the unknowns of the component model are the coeffi  cients 

of the polynomials Φs (B) and Φn =3 and  the variants of the innovations νs 
and νn.. In the model (38), the information about the stochastic structure of the 

components is provided by the observed data series and the general relation 

(39). This relationship involves a system with

      (40)

 equations of covariance while the number of unknowns is qn + qs + 2. 

In the situation where:

   <   (41)

 in the absence of additional conditions, there are an infi nite number 

of solutions for the system of covariance equations, and so there is an infi nite 

number of variants for the decomposition of the xt series. Any decomposition 

that checks the relationships of the general model and the spectrum of the 

components is not negative is an acceptable decomposition. All admissible 

decompositions are equivalent from the point of view of the observed series.

 Due to the fact that there are smaller possible structures that 

generate the same series observed the time series components are generally 

unidentifi able. For example, if we want to extract the seasonal component from 

a series of times, we start from the hypothesis that seasonality is represented 

by fl uctuations with a one-year period that correspond to spectral amplitudes 

located at seasonal frequencies. This defi nition is not quite restrictive. Large 

spectral amplitudes are generated by large values   of the autoregressive 

polynomial, but due to the fact that no condition is imposed for the mobile 

media and for the variant of innovation, a multitude of possibilities for the 

model is allowed.

 The conclusion is that, in order to identify the components of the time 

series, some arbitrary assumptions are required in addition to the four premises 

presented in the previous paragraph. One of the benefi ts of decomposition 

based on ARIMA models is that assumptions can be explicitly made while, in 

the case of empirical methods, these assumptions are not known.

 • Canonical decomposition
 The canonical decomposition was fi rst proposed by Box, Hillmer and 

Tiao (1978) and then by Pierce (1978). The canonical decomposition treats 

the problem of identifying the model as a problem of noise distribution. The 
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way it is distributed is an a priori decision and therefore another condition is 

explicitly stated.

 The canonical decomposition consists in specifying the component 

that is to be estimated, ie the signal, so as to be as free as possible from the 

noise. Noise is mainly distributed to the random component. The noise emitted 

signal is called a canonical signal and shows a zero value in its spectrum, which 

corresponds to a unit root in the moving average polynomial. Therefore, the 

canonical signal is non-invertible.

 The hypothesis of component independence involves the following 

relationship:

  (42)

 If we did:

      and

 

 then the quantity εs + εn can be seen as the variant of the noise included 

in the spectrum of the observed series and which can be arbitrarily assigned. 

It is clear that the problem of identifying the model is due to the fact that a 

fraction of εn and εs can be extracted from the spectrum of any component and 

attributed to the other component. If we eliminate the noise as permitted by the 

st signal and assign it to the non-signal nt, then we obtain ssn gg eww += )()(0
 

the spectrum of the canonic signal, non invertible and snn gg eww += )()(0
  

spectrum non-signal in which all the noise is concentrated..

 An important property of canonical decomposition is that admissible 

signal models can always be represented as the sum of the canonical signal plus 

an orthogonal „white noise”. Moreover, Hillmer and Tiao (1982) have shown 

that canonical decomposition minimizes the signal innovation variant and the 

random component innovation is maximized when the other components are 

considered canonical.

 

 • Component Estimation
 The ultimate object in the decomposition of a time series is the 

estimation of the St, signal, that is, of the component that is expected to be 

estimated in the time series structure.

 If we start from a certain Xt realization of the observed process and 

if we note with Ŝt, the signal estimator, in order to determine an optimal 

estimator, we will make the diff erence between the signal and its estimator 

minimal, ie the estimation error is minimal . Which means we will determine 

Ŝt so that:
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 be minimal. Under normal distribution conditions, the estimator Ŝt is 

equal to the expected conditional value E(st | Xt) e it is a linear function of Xt 

elements.
 The actual decomposition procedure consists in determining the 

estimator Ŝt, in the context of the assumptions about the structure of the 
model made in the previous paragraphs.

 a. For a complete accomplishment of the process Xt = {x-∞ … xt… 

x+∞}

 The estimator Ŝt, is determined, as Whitle (1963) has shown, by the 
following symmetric fi lter known as the Wiener-Kolmogorov (WK) fi lter:

 V(B,F) =
    =    (43)

 The estimator Ŝt is determined by the relationship:
 Ŝt = V(B,F)Xt (44)
 where the fi lter V(B,F) is the ratio of the generating functions of the 
autocorporation for the signal and for the observed series.
 An important feature of the WK fi lter is that it is only necessary to 
specify the signal model and the observed series to determine the estimated 
signal values.
 From relations (43) and (44) we obtain:

 Ŝt = ks  (45)

 where ks = Vs / Va.  From the previous relation, we notice that the fi lter 
is the generating function of the autocoverse, ACGF, for the next stationary 
model:
  (46)
 where bt is „white noise” with Vs / Va. So we infer that the fi lter is 
convergent, centered and symmetric.
 If we pass into the frequency space we can have a representation of 
the fi lter of this form:

 
(B,F) = g

s
 (ω)/ g

s
 (ω) (47)

 which is known as the benefi t of the fi lter. 
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 The spectrum of signal estimator Ŝt, will take the shape:

  (48)
 The square of the fi lter benefi t shows how the variant of the series 

contributes to the signal version. When for a certain frequency, the signal 

dominates the noise, V(BA approaches 1 and when the noise dominates the 

signal,  it approaches 1.

 b. For a fi nalized process  Xt = {x1, x2.............xt}
 The hypothesis of an infi nite series was necessary because the 

WK fi lter in relation (43) goes through the real right -∞ to +∞. In practica l 

conditions, however, the observation is fi nite. Because the fi lter is convergent, 

it can be interrupted smoothly at a certain point. For periods very close to both 

ends of the series it is impossible to apply a WK fi lter that is symmetrical. At 

the beginning and at the end of the observed series, the estimator’s calculation 

involves the knowledge of past and future values   that are not known at the 

time of decomposition. It is therefore necessary to extend the time series with 

estimated values   and predicted values.

 The Burman-Wilson algorithm (Burman, 1980) allows the fi ltering to 

be performed effi  ciently with a minimum number of predicted and predicted 

values.

 Estimation errors can be broken down into two types of errors: the 

fi nal estimation error and the revised error.

 The fi nal estimation error calculated as St - þt is obtained in the 

hypothesis of a complete series achievement. In practice, however, when the 

number of achievements is high enough, the average estimate error refers to 

the values   in the center of the series.

 The revised error is related to the impossibility of achieving infi nite 

achievements and refers to the calculated estimator near the extremes of the 

time series. The independence of the two types of errors was demonstrated by 

Pierce (1980).

Conclusions
 From the authors’ study and presented in this article it is concluded that 

the spectral model can be successfully used in chronological series analysis. 

The considered mathematical relations constitute a practical possibility of 

analyzing the empirical data in order to determine the parameters and trend 

of the analyzed phenomenon. It follows that the decomposition of time series 

can be achieved by using the ARIMA model, which is based on qualitative 
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elements. We can consider admissible or canonical decomposition. The 
canonical decomposition consists in specifying the components (factor) that 
are meant to be expressed so that it is as close as possible to reality. The 
ultimate goal in decomposing a time series is to estimate the signal, that is, 
the component to be estimated. Component Estimation aims at completing 
the process under review and fi nalizing this process. The use of the Burman-

Wilson algorithm allows for effi  cient fi ltering even in the case of a small 

number of estimated and predicted values.
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