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Abstract: 
In this article, the authors started from the fact that in general, the concept of conditional 

probability and the conditional linear probability in terms of orthogonal projections are 
common to the crowd of linear functions. Against this background, a presentation on the main 
conditionality involved in univariate regression was conducted. Thus, linearity, uncolinerity 
and conditional normality are presented and demonstrated. At the same time, 
homoscedasticitate conditioning is highlighed. Further, the presentation of conditions linearity 
and homoscedasticitate is based on the concept of error highlighting to be considered for 
univariate regression. Further, it points out that the estimation is performed by the method of 
least squares parameter which reduces to beta estimation. Another element considered and 
clarified concerns the replacement of the probability through the distribution probability 
sampling, that is subject to minimization criterion. 
  Finally, it highlights the fact that ordinary least squares estimator , of  has a 
minimum variation in the family of all linear unbiased estimators's of  '. 
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Introduction 
In general, are common the concepts of conditional probability and linear conditional 

probability – or linear regression – in terms of orthogonal projections the purposes of rule L2, 
on the set of integrable functions of any vector z, indicated by L2(z), and on the set of linear 
functions of z, indicated by L2(z). We will aplly the concept of regression and linear 
regression to specific models to study estimation and testing problems. 

We will mention some general concepts of linear regression. Lets consider a statistic 
model n

n
n PXM ,,  where nmnX  is the sample domain ,n  is the parametre 

domain, and nP  is the family distributions of the sample. Let be nXx  a finite 
series niix ,...,1)(  with )',( iii zyx  where 1,, mqzy q

ii . We will consider only the 
case in which the size  p of iy , is equal to one. The observations nxx ,...,1  are independent in 
the purpose of distribution nP  for all  and distributed by the same distribution of the 
probability n

n QPQ ][: . Moreover, we assume that for all iyn,,...,1 i ijz  for j=1,…, q 
are square integrable random variables, eg. belong to L2(z). 

The regression model presentation in terms of probability it is, in the linear case, the 
same as the one presented by Spanos (1986), who called it linear regression model in contrast 
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to the Gaussian linear model, defined by the normal equation uXy  . For the last one, 
the exogenous variables seem to be decisive. Indeed, the linear regression model is based on 
general probabilistic arguments and the Gaussian linear model is just a particular case. In this 
presentation, rather a general one of the regression model, we can deepen the study based on 
same author works.   

Literature review 
Regarding the linear regression model, a more rigorous proof of the OLS equivalence 

and the method of moments can be found in Gouriéroux and Mon-Fort (1996a). Restricted 
regression model has been studied by numerous authors, especially Gouriéroux and Monfort 
(1996a, Volume 2), Greene (1990), Spanos (1986), Judge, Griffiths, Hill, Lutkepohl, and Lee 
(1985), and Judge, Hill, Griffiths, Lutkepohl, and Lee (1988). To show that 

*ˆ
n  is BLUE, 

Judge, Hill, Griffiths, Lutkepohl and Lee (1988) can be consulted in particular. For an 
estimation, you can consult Spanos (1986), Greene (1990), and Judge Hill, Griffiths, 
Lutkepohl and Lee (1988). The main issues for log linear model can be found in Greene 
(1990). To demonstrate the convergence of 

2ˆ n to 2   Monfort (1982) can be consulted. In 
a comparison analysis of test procedures of Wald, Rao and LR in case that the null hypothesis 
can be expressed in the form rR ,it may be deepen the study of authors Judge, Griffiths, 
Hill. Lutkepohl, and Lee (1985) and Spanos (1986). 

Regarding nonlinear parametric regression we are pointing for further study Bierens 
(1994), Gouriéroux and Monfort (1996a, Volume I), Greene (1990, Chapter11), Spanos 
(1986); and for the linear restriction test - Bierens (1994). 

The part relating to the models incorrectly specified it can be deepen by studing the 
works of  White (1980), Florens, Ivaldi i Larribeau (1996), Gallant and White (1988) and 
White (1994). 

 
Methodology and data 
We are interested in the conditional probability of the form 

 
For all i, where  is a function of  that we suppose is finite. We consider this vector 

parameter estimation problem  , assuming that g is known. Definig the random vector u in 
the domain p  and )',...,( 1 nuuu  for all i, we obtain: 

 

 
(1) 

The properties that will lead to the next model:  

  (2) 
The choise of g , or more generally the choice of conditioning or design determines 

the type of model to be considered. In this way, if the domain is restricted to the set L*2(z). In 
the field of linear functions of z, we obtain: 

 

Linear regression 
First, we consider the assumptions that allow us to specify what we call linear 

regression model. Let us remember that iy  and )',...,( iqii zzz  for all i=1,…, n with the 
property that  1iz , to which we will return later. 

 
First we will assume the linearity condition 

For all i=1, . . .  , n, we have: 
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, cu  
)',...,( 1 q , in addition )'( ii zzE  is reversible.  

We can deduce from this assumption the general form of linear regression equation,
using the expression for any term iu  resulting from the relation (1), as follows: 

 
We define vectors n x 1 -  y and u by )',...,( 1 nyyy  and )',...,( 1 nuuu and matrix  Z

n x q by function: 

   
The matrix of the regression equation is uZy . 
By construction, the term iu possess a number of properties. For all  i=1,…,n, we get: 

.   
We note that the independence  xi, implies that )|()|( ZuEzuE iii  and so 

  
Then we deduce:  

(3) 

This second property represents the conditional orthogonality between iu  i iz . Also,
these properties remain valid in terms of the marginal probabilities:  

and  

  
For i=1,…,n, that is the fundamental equation to be estimated. 

The next conditioning indentified is the assumption of non-coliniarity: 

 
This can be written in the following equivalent ways 0)'det(,)'( ZZqZZRank  or

Z'Z reversible. This assumption is equivalent in terms of distributional assumption that the
sample matrix variation )'( ii zzE  is reversible which does not depend on  i. 

Another conditioning is that of homoscedasticity, respectively: 

     
We can infer immediately that 2)|( ii zyVar , for all i=1,…, n. Furthermore, in

order of all  i i j cu i  j, we obtain: 
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As long as iy  and jy are conditional independent Z, we deduced: 

 
This property of the error term can be written  in the realtionship form:  

 
Or 

 
The last conditioning is id the normality conditioning, when  is normally distributed  i 

= 1,..., n. 
Conditionings l, 3, and 4 can be resumed by:  

 

For all  i = 1,... ,n, implying that  
more precisely 

 
This last property (conditioning) summarizes the basic principles of linear regression 

models in a large number of econometrics manuals that specify the model in this way, starting 
with the error term and derived from it the assumptions of orthogonality, linearity and 
homoscedasticity. In this case, the conditioning is specified. 

The estimation by ordinary least squares is reduced to the estimation of the vector 
parameter . We will use here the results of the previous chapter about the notion of the best 
aproximation based on the purposes of the rule L2.  The estimator you get you get with this 
method is the ordinary last square (OLS) of  . 

The estimator it is obtain as a solution to the problem of minimizing  the next 
function over , ie:

 From here we get the following 
simple equations, respectively 

      (5) 
The (4) equation defines as a solution to a minimization problem, as: 

 
The first order conditions (5) form a simple equation of time, fixing  
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Replacing the probability in sampling the probability distribution calculated using the 

empirical distribution, transforms to minimize: 

 
(6) 

to q,...,1 , or in terms of minimizing the matrix: 

 
to  ),...,( 1 q . 

Primele condi ii ale ordinii problemei minimiz rii sunt:  

 
(7) 

This can be rewritten as: 

 
or 

 
This last relationship allows us to get the expression for the moment estimator n

ˆ , 
referred to herein as the smallest fours ordinary estimator ,  ie: 

( 8 )  

Following the logic notation, this estimator should be noted with n
ˆ . We will use the 

notation n
ˆ  to remain in the demonstration system assumed002E 

The second condition is satisfied for orders: 

 
which is a positive semi-defined matrix, such n

ˆ , it is a minimum.  
Considerând, pentru toate i = 1,...,n, 

 
and 

 
We can define the vectors  ŷ  and û , both with the size n x 1, by: 

 
i 

 
  

 
Under conditionings 1-3, when 2  in unknown, it can be estimated by: 

 i 
 (9) 
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Totu i, vom prefera un estimator diferit, care r mâne impar ial, adic :  

 
(10) 

2~
n it can be written as: 

  
where 2ˆ n  is equal to: 

 
and 

')'(1 1 ZZZZM Z  

We will consider the conditional density of  iy  has the form: 

 
The maximization problem in this case is: 

 
MLE of  and 2, we express through n

~ , i 2~
n  satisfies the relationship: 

    
where nl   is the given expresion of the probability 

 
The estimators are then derived, namely 

 
and 

 
This is equivalent to 

 
(11) 

and 
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(12) 

In terms of the relationship (11). From the relation (12) we can derive the expression for 2~
n  

and we get: 

 
(13) 

The properties of the small samples will be highlighted starting with the finite 
sample n

ˆ . n
ˆ  it can be written in the form Ay, cu A = (Z'Z)-1Z', and thus linear in  y. More, 

 
So that, 

 therefore n
ˆ is an impartioal estimator of . Conditional variance is 

given by: 

   
Thus, we get to Gauss-Markov theorem, which states: 
„Ordinary least squares estimator n

ˆ  of  has a minimum variation in the family of 
all linear unbiased estimators of ”.  

To demonstrate this, we will consider a different linear estimator of , denoted n
~ , of 

form  Cyn
~ , where C is a matrix q x n , of form: 

 
In the above equation, D has the dimension  q x n. Suppose this new estimator is 

unbiased, that is: 

 
Means that means DZ = 0 and as a consequence: 

 
Computing the variation of n

~ , using the DZ = 0 constraint, and also 

nIZuVar 2)|( , we obtain: 

 
Due to the fact that D'D is a positive, semi-defined matrix, results that in case of a 

finite sample n
ˆ , is the best linear unbiased estimator (BLUE) of . 

Taking into consideration the properties of 2ˆ n , for proving that is an estimator, we 
start from the equation: 

., where 0ZM Z , we obtain the 
result: 
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The conditional probabilities resulting from this calculation is: 

 
From where and we can conclude that:  

 
If this is a scalar, then aatr )( ; if.A and B are two arrays of similar size, and 

consequently tr(AB) = tr(BA); 
 It also results that: 

 
 

And we can conclude that: 
Se poate ar ta de asemenea c  

 
We can conclude that the maximum probability estimator is unbiased. 
 

Conclusion : 
This article highlights the main general theoretical concepts on univariate regression. In this 
context, presents conditionalities that must be taken into account in the construction and use 
of univariate regression in practical economic analysis.  In this analysis we’ve annalysed the 
presentation of the regression model in terms of probability, in accordance with the theories 
expressed by a number of econometrics specialists (eg Spanos) is a linear regression model 
defined by the mathematical equation Y = X  + . In this model, the considered exogenous 
variable is crucial. Estimation of  parameter in such a function is performed by ordinary least 
squares method. The obtained estimator from this method is, in fact, the estimator of least 
ordinary squares (OLS) of . In the presentation made, we believe that the maximum 
likelihood estimator is unbiased. Although univariate regression analysis is rarely used in 
social-economic, it is recomanded to use when, in fact, is a form of nonlinear regression. 
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