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Abstract
 This article describes the main elements on regression models with 
instrumental variables. There are reviewed the main theoretical approaches in the 
literature, asymptotic properties when using sensitive instruments, t-statistics with 
instrumental variables, traditional asymptotic modifi ed s-statistics and t-statistics, 
fi nite sample properties with sensitive instruments.
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1. Generalities
 It is known that standard asymptotic inference techniques to estimate 
instrumental variable can be extremely weak if we have sensitive instruments. In 
some cases, failure is very high. False results can be framed in confi dence intervals 
giving the impression of high precision. These punctual estimations give us 
precise values   of these coeffi cients that have sometimes irreversible consequences.
Ultimately, if an equation is mistakenly identifi ed, then they do not give accurate 
data about the system’s parameters. We try to clarify the statistics of the test and 
the confi dence intervals with correct highlights, meaning that they lead to accurate 
inferences when instruments are sensitive and essentially identical with statistics 
test with instrumental variables, asymptotic and confi dence intervals when correct 
instruments are available. 
 Most studies are made on inference in regression models with instrumental 
variables that focused on simple model which includes endogenous variables. If 
we consider the general regression model with instrumental variables, in the model 
results with one endogenous variables included, individual structural coeffi cient do 
not apply. The problem occurs when the null value is specifi ed for complete parameter 
vector, in which case null value estimation can provide us a consistent estimation of 
the error variance, but the zero value specifi cation of an individual coeffi cient cannot 
be specifi ed.
 The analysis is focused on obtaining valid values   of individual structural 
coeffi cients in regression model with instrumental variables.
 The approach is similar to the one made by Choi and Philips in 1992, when 
they have given a fi nite sample and asymptotic deduction in structural equations 
partially identifi ed. We are trying to expand the use of Choi and Philips, using sensitive 
instruments and methods for deducting nonstandard structural coeffi cients. We take 
into account cases where tools are sensitive to all structural coeffi cients and cases in 
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which the instruments are sensitive only to certain coeffi cients. Also, we consider 
cases in which the instruments are weak but strong individual coeffi cients for a linear 
combination of structural coeffi cients. We use the asymptotic sensitive instruments 
Staiger and Stock (1997) to analyze the asymptotic behavior of the estimators and 
statistics tests of individual structural coeffi cients. Also, we evaluate the performance 
of various estimators and fi nite sample test statistics through a more extensive Monte 
Carlo set of experiments. 
 After reviewing the literature on the estimation and inference in recent 
regression models with instrumental variables with sensitive instruments, we 
present the standard regression model with instrumental variables for endogenous 
variables. Then, we review the standard identifi cation conditions and determine 
how to identify partial and sensitive instruments. Then we refer to methods of 
estimation and inference methods in regression with instrumental variables, with a 
focus estimation and inference in the case of individual structural parameters. Finally, 
we conclude the asymptotic behavior of various estimators and test statistics in a 
variety of cases with sensitive instruments. We evaluate the performance of fi nished 
samples of various statistics through an extensive Monte Carlo set of simulations.

2. The statistical and econometric regression model concept evolution
 Several recent papers have examined the distribution of instrumental 
variable estimator in identifying sensitive and performance related matters asymptotic 
traditional tests. Among these works are the works of Bekker (1994); Blomquist and 
Dahlberg (1999); Bound, Jaeger and Baker (1995); Choi and Philips (1992); Hahn 
and Hausman (2002); Hahn and Inuoe (2002); Hall, Rudebusch and Wilcox (1996); 
Chamberlain and Imbens (2004); Kleibergen (2000, 2002); Kleibergen and Zivot 
(2003); Maddie and Jeong (1992); Moreira (2003); Nelson and Startz (1990); Philips 
(1989); Staiger and Stock (1997); Stock, Wright and Yogo (2002); Stock and Yogo 
(2004); Wang and Zivot (1998); WNG (1999); Zivot, Startz and Nelson (1998). 
Dufour (1997) provided overall results for obtaining correct sensitive identifi cation 
probability levels. Especially, Dufour showed that α nominal test to be valid in a 
sensitive identifi cation confi dence intervals involved in statistical test must be 
unlimited at least with 1 – α value.
 Half a century ago, Anderson and Rubin (1949) described the statistic 
Anderson-Rubin (AR), in which normal conditions it provides an exact test, a small 
sample of a hypothesis that specifi es values   for each element of Beta structural 
parameter vector. Zivot, Startz and Nelson (1998) showed how to use statistics AR to 
build reliable areas for a single endogenous variables, agreed an improved statistics 
for maximum likelihood and estimated the method of generalized moments based on 
tests with LR and LM adjusted degrees of freedom.
 Wang and Zivot (1998) gave an asymptotic justifi cation for using Staiger and 
Stoke (1997) asymptotes for these cases. Recently, Kleinbergen (2002) and Moreira 
(2003) proposed LM asymptotically tests, as being more accurate than the AR test and 
a higher probability percentage (likelihood ratio LR) and Lagrange multiplier tests 
studied by Wang and Zivot (1998).
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 The analyses of the papers presented above is limited to single endogenous 
variables or assumptions that specify values   for all the vector of coeffi cients. We 
handle deduction in the two-point factor variables that extend the results of Choi and 
Philips (1992) in the case of sensitive instruments. It stressed that Dufour (1997), 
Wang and Zivot (1998), Dufour and Jasiak (2000) describe the use of projections 
in several statistics tested correlated to obtain sets of reliable elements β individual 
but studying these methods in the presence of sensitive instruments. Basically, using 
projection procedure generally requires a complicated numerical maximization. 
Recently, Taamouti (2001), Dufour and Taammouti (2003) gave a limited set of results 
for obtaining reliable analytical sets of coeffi cients based on projects for individual 
structures based on certain statistics test.
 Stock and Wright (2000) explored to reach wider structural parameters 
estimated by GMM deduction with sensitive instruments and in the case of the simple 
linear equations model is based on two-stage small squares or maximum likelihood 
estimates. If some endogenous variables are thoroughly checked, Stock and Wright 
suggest focusing on the identifi ed parameters and AR using statistics to identify 
remaining parameters. However, Stock and Wright expressed that their method of 
construction of the confi dence asymptotically valid intervals vectors are somehow 
diffi cult, but the confi dence interval can be found by asymptotically conservative 
design parameters, as suggested by Dufour in 1987.
 Kleibergen (2000) gave an alternative to AR concentrate statistics of Stock 
and Wright in linear model with instrumental variables. A general context alternative 
in  GMM context is a research of Kleibergen (2002).
 We consider the linear structure equation with right hand k variables:

 

  y    =     X             +    u 
             (n x k) (k x 1)     (n x 1) 

         =     Xi         i   +       X-i            -i         +    u 
             (n x 1) (1 x 1)       (n x (k - 1)) ((k - 1) x 1)      (n x 1) 

(1) 

 Where Xi represents the i column of X1 , X-i is the residual value of X and u is 
the deviation error vector. Our attention is focused on inference scalar parameter βi 
using regression with instrumental variables where variables X are endogenous. The 
reduced form of population regression model is Y and each column of X over all 
values of q and exogenous instruments for matrix Z, like: 

  
 

    y     =     Z             +    v 
(n x 1)   (n x q) (q x 1)     (n x 1) 
 
    X     =    Z         +       V 
(n x k)    (n x q) (q x k)     (n x k) 

(2) 
 
 
(3) 

 The corresponding equations for endogenous variables Xi  and X-i are:
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       Xi     =     Z      i      +    Vi 
   (n x 1)   (n x q) (q x 1)       (n x 1) 
 
       X-i     =      Z        -i      +      V-i        
(n x (k - 1))    (n x q) (qx(k - 1))       (n x (k - 1)) 

(4) 
 
 
(5) 

 The model described in equations (1) - (3) is called linear regression model 
with instrumental variables.

 Consider the probability convergence vector     
p 

 
 and distribution   convergence 

vector    
d 

  
. We require the following major assumptions on conditions on exogenous 

variables and error terms.
 -  Z has q value on the entire column and is not correlated with u and V
 -  E[ZtZi

i] = M > 0, where Zt represents the t observation of Z
 -  the error terms ut  and Vt  are considered with 0 mean value and are not 
serial correlated with the positive matrix of covariance.
 β vector is usually estimated by the method of instrumental variables (GMM 
and TSLS equivalent method). The I estimator with instrumental variables is:

 
(6) β IV     =     (X’ Pz X)-1 X’ Pzy = (X’ X)-1X’y  

 Where Pz=Z(Zi Z)-1 Z’ and X= PzXXX.
 Using standard regression techniques, we can express βi estimator of the 
fourth degree:

 β i IV     =     (X’i Q-i Xi)-1 X’i Q-iy   (7) 
 Where X’i = PzX, X-i = PzX-1 si Q-i =  Iq - Px X’ I

 We suggest some statistics for individual structures for the deduction of 
the coeffi cient regression model with instrumental variables that are rigid sensitive 
instruments. Some of these methods are based on the estimator with instrumental 
variables estimator LIML and some of them with IV estimator. We briefl y describe 
these statistics and introduce some new ones. 

4. Asymptotic “t” Statistics with instrumental variables

 Suppose we want to test Ho: βi = βi0 based on traditional instrumental 
variables estimation. Standard practice is to use asymptotic statistics t :

 
(9) 

                      βi, IV - β0
i 

tIV (β0
i)    =             

             SE ( βi, IV ) 
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where 

                       
SE ( βi, IV ) = uu,IVHii  , uu,IV = n-1 (y-XβIV)’ (y-XβIV) 

 LIML estimator of β maximizes the probability function - log “log likelihood 
function” referring to Γ and Σ :

 
Lc (β)    = -n ln(2 ) -   ln k (β) -   ln I YQ’ZYI , 

 (10)
 where Y = [yX] and 

 k (β)  =   

 LIML β estimator minimizes equivalently k (β) and the minimized value, 
k  (βLIML) = k LIML   can be shown to the smallest root of the equation determining 

IY’QxY - I kY’QzY. LIML estimator is usually expressed as a k-class estimator

 

                       
βLIML  = [ X’ ( In – kLIMLQz)X] -1 [X’(In – kLIMLQz)y]  

 For testing βi = β0, where ratio „t” – LIML is

   
 

                        β i, LIML - β0
i 

tLIML (β0
i)  =   

                SE (βi, LIML)  

(11) 

 where   SE (βLIML) =    var (βi,LIML)  =     uu,LIML [X’(In – kLIMLQz)Xii-1 

 Also, LR statistics takes the following form:

 (12) LRLIML (β0
i)  =  n ln (kLIML (β0

i)) – n ln (kLIML)   

 where  k LIML (β0
i) is calculeted with the probability log function, with βi = 

β0
i restriction and k LIML is calculated from probablility function (10).

 
„S” Statistics and  „t” modifi ed Statistics

 We consider the formation of a statistical test for H0: βi = β0i so it will 
be close to 0 even if the estimated deviation from reality is small or if evidence is 
sensitive for identifi cation: 

 
i = i (βi,IV – β0i)  

 (13)
  where i =     Hii-1  (14)

 Stock and Wright (2000) found an AR statistic concentrated for testing H0: 
βi = β0

i for a GMM framework. In linear regression with instrumental variables, this 
statistic takes the form:
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(15) 
                  [y – Xiβ0

i – Xiβ-i(β0
i)]’ Pz[y – Xiβ0

i – Xiβ-i(β0
i)] 

AR (β0
i)  =   

                 [y – X-iβ0
i – X-iβ-i(β0

i)]’ Qz[y – Xiβ0
i – X-iβ-i(β0

i)]/ (n-k) 

 Where β-i(β0
i) presents IV or LIML β-i  estimation that impose βi= βi

0. By 
estimating the restricted LIML, we minimizes (13), while the restricted estimation 
with instrumental variables takes the analytical form  (19). When  β-i(β0

i) = β-i,IV(β0
i) 

we use ARIV(β0
i) and when β-i(β0

i) = β-i,LIML(β0
i) we use ARLIML(β0

i).
 Kleibergen (2000) proposed a concentrated version of K statistics to test the 
individual hypothesis H0: βi = β0i which has the form:
 
 
 
 
 
 

                  (y – Xiβ0
i – X-iβ-i, LIML(β0

i))’ Pw(β0i)(y – Xiβ0
i – X-iβ-i,LIML(β0

i)) 
K (β0

i)  =   
                 (y – Xiβ0

i – X-iβ-i, LIML(β0
i))’ Qz(y – Xiβ0

i – X-iβ-i,LIML(β0
i))/(n-k) 

 (16)

 If we consider β= (βi,β’-2)’ and apply the hypothesis testing H0: β = β0, using 
AR statistics, then:

 

                      (y – Xβ0)’ Pz (y – Xβ0)/ k 
AR (β0)  =   
                  (y – Xβ0)’ Qz (y – Xβ0)/ (n – k)  (17)

 If the errors are normally distributed, Anderson and Rubin (1949) showed that 
(17) is distributed in Fk,n-k fi nite samples below zero value.. This result is maintained 
regardless the quality of the instruments.

5. Asymptotic properties when using sensitive instruments
 We evaluate asymptotic properties conditions when using the sensitive 
instruments for individual regression coeffi cients deduction of instrumental 
variables. To simplify asymptotic analysis, we focus on the regression model with 
instrumental variables (1) - (3) with two endogenous variables, with β = (β1, β2)'.
 Taking into account the results of Staiger and Stock (1997) and Wang and 
Zivot (1998) we defi ne the framework sensitive instruments using a near zero value. 
With multiple endogenous variables, characterizing sensitive instruments becomes 
more complicated because the Z instruments can be sensitive to endogenous variables 
coeffi cients at all or only for a subset of coeffi cients.
 Asymptotic distributions of the various estimators and statistic tests in cases 
with sensitive instruments depend on parameters which measures the issues of X1 and 
X2 endogenous, multivariate normal random vectors scaled and standardized quality 
measurement tools Z.
 If the instruments are weak for all structural coeffi cients we cannot get a 
valid asymptotic inference using any of the proposed statistic tests. However, although 
valid asymptotically but conservative confi dence sets for individual coeffi cients can be 
calculated using AR’s Dufour and Taamouti projection sets. In case of very sensitive 
instruments, these sets are endless with probability close to the coverage probability 
mentioned.
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 Most asymptotic results for estimators and statistic tests were based until now 
on the case with sensitive instruments. In the third case with sensitive instruments,  β1 
and β2 are also sensitive but the individual linear combination of α = β1 + β2 is strong. 
To determine the limiting distributions of β1, β2 and α we return to Choi and Philips 
(1992) and consider a rotation of the regression model. An asymptotically valid set 
for βi scalar confi dence level based on the reversal of α 1 T (βi

0) is defi ned by the 
relationship:

 Cβi ( ) =  (β0
i : T(β0

i)’  Cα  (18)
 Where Cα is the 1- α limiting quintile distribution of T (βi

0). Calculation 
of the set (18) requires fi nding values of βi0 so T (βi

0) <Cα. In general, the process 
involves a numerical expression. However, using the conclusions of Dufour (1997), 
Zivot, Startz, Nelson (1998), Dufour and Jasiak (2001) we can fi nd out that T (βi

0) ≤ 
Cα inequality can be rewritten as a quadratic inequality, as:

a(βi
0)2 +bβi

0 + c ≤ 0,
 where the values of a, b, c, depend on the information provided and on cα, 
then the regions of trust defi ned (18) have closed shape convenient expression and can 
take one of four forms: a period connected form (βi

L, βi
H; L = lower; H= upper); union 

of the two rays (-∞, βi
L) U (βi

H, ∞), the entire real line, or empty set.

Finite sample properties with sensitive instruments

 In this section we evaluate the properties of the fi nished sample statistics 
deduction competition for individual structural coeffi cients using a comprehensive set 
of Monte Carlo experiments. Some authors have considered Monte Carlo regression 
models with varying instruments with sensitive instruments are the most important 
works of Choi and Philips (1992); Hall, Rudebusch and Wilcox (1997). Most studies 
have focused on Monte Carlo estimation methods and deductive performance in this 
sensitive instruments based on models with one right endogenous variable. Choi 
and Philips (1992), Flores-Lagunes (2000) and Kleibergen 2000 used models with 
two endogenous variables and the results of their work shows that it is misleading to 
extrapolate results from one case with one variable from one case multivariables. 
 Staiger-Stock sensitive instruments show varying distributions of estimators 
instruments and test statistics depend on three key parameters issues:
 - The degree of endogeneity as it is measured by the correlation coeffi cients 
pu1, pu2, p12;
 - The number of instruments, q;
 - The relevance instruments measured by Λ'Λ / q.  The instruments are 
irrelevant when Λ'Λ / q = 0. 
 For the endogenous variable Steiger's simulation experiments show that the 
instruments are essentially Stock sensitive when 0 <Λ'Λ / q <10.
 The tools are pretty good when Λ'Λ / q> 10. In the case of multiple endogenous 
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variables, Λ'Λ / q is a weak matrix and tools are characterized by a minimum of Λ'Λ 
/ q. In addition, Steiger and Stock shows that the performance standard inference 
methods with sensitive instruments is insignifi cant in models with many irrelevant 
tools (high value of q and Γ≈ 0) and have high degrees of endogeneity.
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